

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

Department of Agriculture and Natural Resources Sciences

QUALIFICATIONS: BACHELOR OF	BACHELOR OF AGRICULTURE								
BACHELOR O	F HORTICULTURE								
QUALIFICATIONS CODE:	LEVEL: NQF LEVEL 5								
07BAGA & 07BHOR	LEVEL. NOT LEVEL 3								
COURSE CODE: ICA511S	COURSE NAME: INTRODUCTION TO CHEMISTRY								
DATE: JULY 2022	SESSION: JULY								
DURATION: 3 HOURS	MARKS: 120								

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER:	MS. PAULINA NDINELAGO NAUPU							
MODERATOR:	MRS. LUCIA TUYENI-KELAO KAFIDI							

INSTRUCTIONS

- 1. Answer all questions
- 2. Type clearly and neatly
- 3. Number the answers clearly
- 4. Report all your answers to the correct significant figures

PERMISSIBLE MATERIALS

1. Scientific calculator

ATTACHMENT:

1. Periodic Table

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Excluding this front page)

State t	State three classification of matter and define them:						
QUEST	TION 2						
	How many mL of 2.0M H ₂ SO ₄ are needed to make 400mL of 0.11M H ₂ SO ₄	[4]					
b)	24.6 mL of a 0.50M monoprotic acid solution was titrated with a 0.18M N solution. What is the volume of NaOH that should be added to the solution to reach the equivalence point?						
c)	Suppose you want to prepare 250.0 mL (that is, 0.2500 L) of 0.100 M CuSby diluting a 1.00 M CuSO $_4$ stock solution. What volume of CuSO $_4$ do you						
QUEST	TION 3						
a)	What is the mass in grams of 4.30 moles of Aluminum?	[3]					
b)	How many moles in 127.5 grams of sodium chloride?	[3]					
c)	How many moles are in 32.7 grams of ethanol (C_2H_6O)	[4]					
QUEST	<u>10N 4</u>						
a)	Calculate the molarity of a solution prepared by dissolving 9.8 moles of solution water to make 3.62 L of solution. What does your answer tells yo						
b)	You dissolve 152.5 g of CuCl2 in water to make a solution with a final volu L. What is its molarity?	me of 2.25 [6]					

a) Name the formula of each of the following acids

[6]

- i) Hydrosulfuric acid
- ii) Iron (III) hydroxide
- iii) Hydrophosphoric acid
- b) Balance the following chemical equations

[8]

[5]

- i) $C + SO_2 \longrightarrow CS_2 + CO$
- ii) $Xe + F_2 \longrightarrow XeF_6$
- iii) $Ag + H_2S \longrightarrow Ag_2S + H_2$
- iv) $FeCl_3 + NaOH \longrightarrow Fe(OH)_3 + NaCl$
- c) Indicate the type of each of the following chemical reactions
 - i) 2Na+Cl₂ \longrightarrow 2NaCl
 - ii) $H_2CO_3 \longrightarrow H_2O + CO_2$
 - iii) $2KCl \longrightarrow 2K + Cl_2$
 - iv) $S+O_2 \longrightarrow SO_2$
 - v) $C_5H_{12} + O_2 \longrightarrow H_2O + CO_2$

30g of C_3H_8 burns in air to produce 70g of CO_2 . $C3H8 + 5O_2 \longrightarrow 3 CO_2 + 4H_2O$ [10]

a) Calculate the theoretical yield

{7}

b) Calculate the percent yield

{3}

QUESTION 7

Bicarbonate of soda (sodium hydrogen carbonate) is used in many commercial preparations. Its formula is NaHCO₃. Find the mass percentages (mass %) of Na, H, C, and O in sodium hydrogen carbonate. [10]

QUESTION 8

- a) Determine the molecular formula of a compound with the empirical formula CF_2 and a molar mass of 200 g/mol [6]
- b) A compound has empirical formula C₂H₅N and molar mass 86 g/mol. What is its molecular formula? [6]

Consider the following equation: $2H_2S + 3O_2 \longrightarrow 2 SO_2 + 2 H_2O$ [15]

a) How many moles of O_2 are needed to combine with 8.4 moles of H_2S

{5}

- b) Starting with 9.2 moles of O₂,
 - i) How many moles of H₂S will you need?

{5}

ii) How many moles of SO₂ will you get?

{5}

QUESTION 10

3.2 moles of N₂ reacts with 5.4 moles H₂ in the following chemical reaction:

$$N_2 + 3H_2 \longrightarrow 2NH_3$$
. [15]

- a) What is the limiting reactant {5}
- b) How many moles of ammonia are formed {5}
- c) How much of the excess reactant is left over? {5}

Total Marks: 120

1	Periodic Table of the Elements													18			
н														He			
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7		9	10
Li	Be											В	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30		32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.27	50.94	51.99	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	54.80
37	3.8	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
84.47	\$7.62	88.91	91.22	92.91	95.95	98.91	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.90	131.25
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.09	196.97	200.59	204.38	207.2	208.98	[208.98]	209.99	222.02
87	8.5	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
223.02	226.03		[261]	[262]	[266]	[264]	[269]	(268)	[269]	[272]	[277]	unknown	(289)	unknown	[298]	илкложе	unknown

57	58	59	60	61	62	63	64	65	66	67	65	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	144.91	150.38	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.06	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227.03	232.04	231.04	238.03	237.05	244.06	243.06	247.07	247.07	251.08	[254]	257.10	258.1	259.10	[262]